URUMU DHANALAKSHMI COLLEGE PG & RESEARCH DEPARTMENT OF MATHEMATICS MODEL EXAMINATION- MAY 2020

SUBJECT: ALLIED MATHEMATICS-II

CLASS: I B.Sc PHYSICS

Time: 3 Hours Max.Marks:75

Part-A [10X2=20] Answer all questions

1. Find approximate value of $\sqrt{98}$ using binomial expansion

2. Prove that
$$\frac{e^2 - 1}{e^2 + 1} = \frac{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \dots}{1 + \frac{1}{2!} + \frac{1}{4!} + \dots}$$

3. Verify that
$$\frac{1}{3}\begin{bmatrix} -1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 is orthogonal

- 4. Define hermitian matrix
- 5. Find the equation of the sphere whose centre is (2,-3,4) and radius 5 units
- 6. Find the equation of tangent plane to the sphere $x^2+y^2+z^2+6x-2y-4z=35$ at (3,4,4)

7. If
$$\frac{\sin \theta}{\theta} = \frac{2165}{2166}$$
 Show that θ is nearly equal to 3^0 1'

- 8. Write the series of $Cos \theta$ in terms of powers of θ
- 9. Prove that sin(ix) = isin hx
- 10. Prove $\cosh^2 x \sinh^2 x = 1$

Part-B [5x5=25]

Answer ALL questions

11a) Find the sum to infinity of the series $\frac{1}{6} + \frac{1.4}{6.12} + \frac{1.4.7}{6.12.18} + \dots$

OR

- b) Sum to infinity of the series $1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \dots$
- 12a) State and prove Cayley Hamilton theorem for $A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$ and hence find A^{-1}

OR

b) Show that the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{pmatrix}$ satisfies its own characteristic equation and hence find

 A^4

13a) Show that the lines $\frac{x-4}{2} = \frac{y-5}{3} = \frac{z-6}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar and find the equation of the plane containing them.

OR

- b) Show that the spheres $x^2+y^2+z^2=25$ and $x^2+y^2+z^2-24x-40y-18z+225=0$ touch externally and find their point of contact.
- 14a) Prove that $\cos 6\theta = 32\cos^{6}\theta 48\cos^{4}\theta + 18\cos^{2}\theta 1$

OR

- b) Express $\frac{\sin 7\theta}{\sin \theta}$ in series of powers on $\sin \theta$
- 15a) Prove that $\sinh^{-1} x = \log \left[x + \sqrt{x^2 + 1} \right]$

OR

b) Separate into real and imaginary parts of $tan^{-1}(\alpha + i\beta)$

Part-C [3x10=30]

Answer any THREE questions

16. Show that
$$\frac{1}{1.3} \frac{1}{2^2} + \frac{1}{2.4} \frac{1}{2^2} + \frac{1}{3.5} \frac{1}{2^3} + \dots = \frac{5}{4} - \frac{3}{2} \log 2$$

- 17. Find the eigen value and eigen vectors of the matrix $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$
- 18. Find the length and equation of Shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and

$$\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$$

- 19, Prove that $\cos^4\theta \sin^3\theta = \frac{-1}{2^6} (\sin 7\theta + \sin 5\theta 3\sin 3\theta 3\sin \theta)$
- 20. If tan(A+iB) = x+iy prove that $x^2+y^2+2x\cot 2A = 1$ and $x^2+y^2-2yx\cot 2B+1=0$

URUMU DHANALAKSHMI COLLEGE PG & RESEARCH DEPARTMENT OF MATHEMATICS QUESTION BANK

SUBJECT: Allied Mathematics –II

CLASS: I B.Sc PHYSICS

UNIT-I

Part-A

- 1. Write the expansion of $(1-x)^{-p/q}$
- 2. Find approximate value of $\sqrt{98}$ using binomial expansion
- 3. If x is large prove that $\sqrt{x^2 + 4} \sqrt{x^2 + 1} = \frac{3}{2x}$ nearly
- 4. Prove that $\frac{e^2 1}{e^2 + 1} = \frac{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \dots}{1 + \frac{1}{2!} + \frac{1}{4!} + \dots}$
- 5. Show that $\log 2 \frac{1}{2!} (\log 2)^2 + \frac{1}{3!} (\log 2)^3 + \dots = \frac{1}{2}$
- 6. Prove that $\frac{e-1}{e+1} = \frac{\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots}{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \dots}$
- 7.Show that $\log_2 e \log_4 e + \log_8 e \log_{16} e + \dots = 1$
- 8. If x is positive, Show that $\log x = \frac{x-1}{x+1} + \frac{1}{2} \frac{x^2-1}{(x+1)^2} + \frac{1}{3} \frac{x^3-1}{(x+1)^3} + \dots$

Part-B

- 1. Find the sum to infinity of the series $\frac{1}{6} + \frac{1.4}{6.12} + \frac{1.4.7}{6.12.18} + \dots$
- 2. Find the sum to infinity of the series $1 \frac{1}{5} + \frac{1.4}{5.10} + \frac{1.4.7}{5.10.15} + \dots$

3. Find the sum to infinity of the series
$$\frac{2.3}{3!} + \frac{3.5}{4!} + \frac{4.7}{5!} + \frac{5.9}{6!} + \dots$$

4. Sum to infinity of the series
$$1 + \frac{1+2}{2!} + \frac{1+2+3}{3!} + ...$$

5.Show that
$$\frac{5}{1.2.3} + \frac{7}{3.4.5} + \frac{9}{5.6.7} + \dots = 3 \log 2-1$$

6.Show that
$$\frac{1}{1.2.3} - \frac{1}{2.3.4} + \frac{1}{3.4.5} - \frac{1}{4.5.6} + \dots = 2\log 2 - \frac{5}{4}$$

Part-C

1. Find the sum to infinity of the series
$$\frac{7}{72} + \frac{7.28}{72.96} + \frac{7.28.49}{72.96.120} + \dots$$

2. Find the sum to infinity of the series
$$\frac{5}{3.6} \left(\frac{1}{4^2}\right) + \frac{5.8}{3.6.9} \left(\frac{1}{4^3}\right) + \frac{5.8.11}{3.6.9.12} \left(\frac{1}{4^4}\right) + \dots$$

3. Prove that
$$\sum_{0}^{\infty} \frac{5n+1}{(2n+1)!} = \frac{e}{2} + \frac{2}{e}$$

4. Sum to infinity of the series
$$1 + \frac{1+3}{2!} + \frac{1+3+3^2}{3!} + \frac{1+3+3^2+3^3}{4!} + \dots$$

5. Sum to infinity of the series
$$\frac{x}{1.2} - \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$$

6. Show that
$$\frac{1}{1.3} \frac{1}{2^2} + \frac{1}{2.4} \frac{1}{2^2} + \frac{1}{3.5} \frac{1}{2^3} + \dots = \frac{5}{4} - \frac{3}{2} \log 2$$

UNIT-II

Part-A

1.Define singular matrix

2. Check whether the matrix
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
 is non-singular?

5. Check whether the matrix is
$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 5 \end{pmatrix}$$
 symmetric?

6. Verify that
$$\frac{1}{3}\begin{bmatrix} -1 & 2 & -2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 is orthogonal

- 7. Define hermitian matrix
- 8. Define Skew Hermitian matrix
- 9. Define Unitary matrix
- 10. Write the characteristic equation of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

11. Show that the matrix
$$\begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}$$
 is orthogonal

12.show that the matrix
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
 is unitary

13.State Cayley Hamilton Theorem

Part-B & Part-C

1. Find the eigen value and eigen vectors of the matrix
$$\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$$

2. Find the eigen value and eigen vectors of the matrix
$$\begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

3. Find the eigen value and eigen vectors of the matrix
$$\begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

4. State and prove Cayley Hamilton theorem for
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
 and hence find A^{-1}

5. Show that the matrix
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{pmatrix}$$
 satisfies its own characteristic equation and hence find A^4

UNIT-III

Part-A

- 1. Show that the lines $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ and $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ are coplanar
- 2. Find the equation of the sphere whose centre is (2,-3,4) and radius 5 units
- 3. Find the centre and radius of sphere $3(x^2+y^2+z^2)+12x-8y-10z+10=0$
- 4. Find the equation of tangent plane to the sphere $x^2+y^2+z^2+6x-2y-4z=35$ at (3,4,4)
- 5.Define skew lines
- 6. What do you mean by coplanar lines

Part-B

- 1. Prove that the lines $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ and $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$ intersect and find the coordinates of their point of intersection. Find also the equation of the plane containing them
- 2. Show that the lines $\frac{x-4}{2} = \frac{y-5}{3} = \frac{z-6}{4}$ and $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar and find the equation of the plane containing them.
- 3. Show that the plane 2x-2y+z=9 touches the sphere $x^2+y^2+z^2+2x+2y-7=0$ and find the point of contact
- 4. Show that the spheres $x^2+y^2+z^2=25$ and $x^2+y^2+z^2-24x-40y-18z+225=0$ touch externally and find their point of contact.

Part-C

1. Find the length and equation of Shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and

$$\frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$$

- 2. Find the equation of the sphere for which the circle 2x+3y+4z=8, $x^2+y^2+z^2+7y-2z+2=0$ is a great circle.
- 3. Find the centre and radius of the circle $x^2+y^2+z^2=9$, x+y+z=3

UNIT-IV

Part-A

- 1. Write the formula to expand $\sin n\theta$ in series of powers of $\sin \theta$ and $\cos \theta$
- 2. Write the series of $\sin \theta$ in terms of powers of θ
- 3. Write the formula to expand $\tan n\theta$ in series of powers of $\tan n\theta$
- 4.If $\frac{\sin \theta}{\theta} = \frac{2165}{2166}$ Show that θ is nearly equal to 3^0 1'
- 5.Evaluate $\lim_{x \to 0} \frac{\sin x \tan x}{x^3}$

Part-B

- 1.Express $\frac{\sin 7\theta}{\sin \theta}$ in series of powers on $\sin \theta$
- 2. Prove that $\cos 6\theta = 32\cos^6\theta 48\cos^4\theta + 18\cos^2\theta 1$
- 3.Prove $\cos 7\theta \sec \theta = 64\cos^{6}\theta 112\cos^{4}\theta + 56\cos^{2}\theta 7$

Part-C

- 1. Prove that $\sin^7 \theta = \frac{1}{4} (35\sin\theta 21\sin3\theta + 7\sin5\theta \sin7\theta)$
- 2.Expand $\cos^8\theta$ in a series of cosines of multiples of θ
- 3. Prove that $\cos^4 \theta \sin^3 \theta = \frac{-1}{2^6} (\sin 7\theta + \sin 5\theta 3\sin 3\theta 3\sin \theta)$
- 4.Expand $\sin^4\theta\cos^2\theta$ in series of cosines of multiples of θ

UNIT-V

Part-A

1. Prove that sin(ix) = isin hx

2.Prove $\cosh^2 x - \sinh^2 x = 1$

3.separate into real and imaginary parts of sin(x+iy)

4. Separate into real and imaginary parts of cosh(x+iy)

5.Express coshx in terms of e^x & e^{-x}

Part-B & Part-C

1. Prove that $\sinh^{-1} x = \log \left[x + \sqrt{x^2 + 1} \right]$

2. Prove that $\cosh^{-1} x = \log \left[x + \sqrt{x^2 - 1} \right]$

3. Prove that $\tanh^{-1} x = \frac{1}{2} \log \frac{1+x}{1-x}$

4. separate into real and imaginary parts of a) tan(x+iy) b) tanh(x+iy)

5. Separate into real and imaginary parts of $\tan^{-1}(\alpha + i\beta)$

6.If sin(A+iB)=x+iy then prove that

(i)
$$\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$$
 and (ii) $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$

 $7.\text{If } \tan(A+iB) = x+iy \text{ prove that }$

$$x^2+y^2+2x\cot 2A = 1$$
 and $x^2+y^2-2yx\cot 2B+1=0$

8.If x+iy = c Cos(A-iB) show that

(i)
$$\frac{x^2}{c^2 \text{Cosh}^2 B} + \frac{y^2}{c^2 \text{Sinh}^2 B} = 1$$
 and (ii) $\frac{x^2}{c^2 \text{Cos}^2 A} - \frac{y^2}{c^2 \text{Sin}^2 A} = 1$